Bootstrap Markov chain Monte Carlo and optimal solutions for the Law of Categorical Judgment (Corrected)
نویسندگان
چکیده
A novel procedure is described for accelerating the convergence of Markov chain Monte Carlo computations. The algorithm uses an adaptive bootstrap technique to generate candidate steps in the Markov Chain. It is efficient for symmetric, convex probability distributions, similar to multivariate Gaussians, and it can be used for Bayesian estimation or for obtaining maximum likelihood solutions with confidence limits. As a test case, the Law of Categorical Judgment (Corrected) was fitted with the algorithm to data sets from simulated rating scale experiments. The correct parameters were recovered from practical-sized data sets simulated for Full Signal Detection Theory and its special cases of standard Signal Detection Theory and Complementary Signal Detection Theory.
منابع مشابه
A Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind
In the present work, a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind. The solution of the integral equation is described by the Neumann series expansion. Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method. An algorithm is proposed to sim...
متن کاملPopulation dynamic of Acipenser persicus by Monte Carlo simulation model and Bootstrap method in the southern Caspian Sea (Case study: Guilan province)
In this study population dynamic of Acipenser persicus with age structure model by Monte Carlo and Bootstrap approach was studied. Length frequency data a total of 4376 specimens collected from beach seine, fixed gill net and conservation force in coastal Guilan province during 2002 to 2012. Data imported to FiSAT II for length frequency analyze by ELEFAN 1. K, L∞ and t0 estimated 203, 0.08 and...
متن کاملBagging During Markov Chain Monte Carlo for Smoother Predictions
Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods to improve the robustness of predictions include bagging and Bayesian shrinkage approaches. These methods can be gainfully combined by doing bootstrap resampling during Markov chain Monte Carlo (MCMC). The result is smoother predictions that are ...
متن کاملConstructing Optimal Transition Matrix Formarkov Chain Monte Carlo via Global Optimization
The notion of asymptotic variance has been used as a means for performance evaluation of MCMCmethods. An imperative task when constructing a Markov chain for the Monte Carlo simulation with prescribed stationary distribution is to optimize the asymptotic variance. Cast against an appropriately chosen coordinate system, the worst-case analysis of the asymptotic variance arising in MCMC can be fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1008.1596 شماره
صفحات -
تاریخ انتشار 2010